Biocontainment Strategies for Genetically-Modified Yeasts

Shamlan M. S. Reshamwala, PhD

PI, iGEM 2023 Team ICT-Mumbai Institute of Chemical Technology, Mumbai

July 17, 2023

 \odot () () () ()

This work is licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License

(日) (四) (문) (문) (문)

• What is 'biocontainment'?

æ

- What is 'biocontainment'?
- Why is biocontainment important and/or necessary?

- What is 'biocontainment'?
- Why is biocontainment important and/or necessary?
 - Safeguarding against unintended release of GM organisms

- What is 'biocontainment'?
- Why is biocontainment important and/or necessary?
 - Safeguarding against unintended release of GM organisms
 - Preventing horizontal gene transfer

- What is 'biocontainment'?
- Why is biocontainment important and/or necessary?
 - Safeguarding against unintended release of GM organisms
 - Preventing horizontal gene transfer
 - Protecting IPR

- What is 'biocontainment'?
- Why is biocontainment important and/or necessary?
 - Safeguarding against unintended release of GM organisms
 - Preventing horizontal gene transfer
 - Protecting IPR
 - Ethics of releasing GM organisms

Strategy 1: Nutritional auxotrophy

Auxotrophic markers have been traditionally used to clone genes in *Saccharomyces cerevisiae*

- ura3
- trp1
- . . .

Auxotrophies can also be used as a biocontainment strategy

Nutritional auxotrophies can be circumvented by scavenging metabolites from the environment

Strategy 2: Engineering dependency on an orthogonal molecule – conditional expression of essential genes

Cells can be engineered to express an essential gene under control of a promoter that is induced by a molecule that is not expected to occur in the natural environment

For example, histone genes have been placed under control of an estradiol-inducible promoter*

Inactivating mutations may give rise to escape mutants that are no longer 'addicted'

* Proc Natl Acad Sci USA 112(6):1803-1808 (2015)

Strategy 3: Engineering dependency on an orthogonal molecule – conditional stability of essential proteins

Here, essential proteins are engineered to be dependent on small molecule ligands for correct folding and activity.

In S. cerevisiae, a destabilizing domain degron, which can be stabilized by estradiol, has been added to essential proteins, leading to estradiol-dependent growth^{\dagger}

[†]bioRxiv 2022.11.24.517818

Strategy 4: Engineering sensitivity to a commonly occurring molecule

Cells can be engineered to be highly sensitive to molecules ubiquitous in the environment

For example, *S. cerevisiae* lacking both native fluoride exporter genes (fex1/2) is highly sensitive to fluoride[‡]

[‡]Nat Commun 11(1):5459 (2020)

Strategy 5: Synthetic auxotrophy

Non-canonical amino acids (ncAA), xeno-nucleic acids (XNA) and non-natural nitrogen bases-dependent synthetic auxotrophies are excellent biocontainment strategies

Orthogonal translation systems, comprising of aminoacyl-tRNA synthetases that incorporate ncAA at repurposed stop codons, have been reported in *S. cerevisiae*[§]

§ ACS Synth Biol 11(7):2284-2299 (2022)

Strategy 6: Kill switches

Kill switches are genetic circuits which, when expressed or repressed, lead to cell death

Cell death can be triggered by expression of nucleases \P or toxin-antitoxin systems \parallel

¶ Yeast 22(3):203–212 (2005) ∥ Appl Environ Microbiol 66(12):5524–5526 (2000)

Implementing appropriate safeguards to prevent escape

Escape frequency has to be determined for any biocontainment strategy implemented in GM organisms

Escape frequency is a function of genetic drift, environmental supplementation, horizontal gene transfer and evolutionary processes

According to NIH guidelines,** escape frequency should be less than 1 in $10^8\,$

** NIH Guidelines for Research Involving Recombinant or Synthetic Nucleic Acid Molecules, April 2019

Use of multiple biocontainment strategies can reduce escape frequencies

A double mutation in *Saccharomyces boulardii* in the *THI6* and *BTS1* genes, causing thiamine auxotrophy and increased sensitivity to cold, has been recently reported^{††}

^{††} Front Bioeng Biotechnol 11:1136095 (2023)

An elegant biocontainment strategy used in Lactococcus lactis^{‡‡}

^{‡‡}Nat Biotechnol 21(7):785–789 (2003)

Shamlan Reshamwala

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

э

Thank you!

Shamlan Reshamwala Biocontainment Strategies

< ロ > < 回 > < 回 > < 回 > < 回 >

æ